GLOBAL ATTRACTIVITY OF NASH EQUILIBRIA OF A LABOR-MANAGED
OLIGOPOLY MODEL

MAREK RYCHLIK AND WEIYE LI

ABSTRACT. We consider the dynamic model of a labor-managed oligopoly in the form of a system
of differential equations. It has been known from our prior work that under natural, verifiable
conditions (equivalent to asymptotically constant output of the industry) this system has a ray
of equilibria which is locally attracting. Also, every solution which tends to the ray of equilibria,
converges to a particular equilibrium on this ray. In the current paper we show that the ray of equi-
librium is also globally attracting and give a constructive estimate for the exponential convergence
to the equilibrium. We also prove global attractivity in an infinite-dimensional model consisting of
an infinite number of competing firms.
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1. INTRODUCTION

The current paper is devoted to the problem of global attractivity of a dynamic model of an
economic system called labor-managed oligopoly [9]. Such models have been studied in recent years.
The current model has been introduced and examined for the existence and local attractivity of
equilibria in [7, 6]. We will summarize previously obtained results in this introduction.

Key words and phrases. labor-managed, oligopoly, global, stability, attractivity.
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1.1. The description of the model. First, let us briefly describe the economic model in question.
Let us consider an n-firm industry, where all firms are labor-managed. Let us assume the hyperbolic
price function:

p(s) = g

where s = )" | z; is the total output of the industry, and linear production functions /;, and linear
labor-independent cost functions c;:

li(z:) = aiz; and  ¢i(z) = oz + G,
where z; is the output of firm i (i =1, ..., n).

Economic interpretation requires that all parameters b, a;, «;, and §; be positive. The surplus
per unit of labor for firm 7 is given by
z; p(s) — wli(z;) — ci(zs)

li(z;)
b . .
(1.1) L A i
ai(z; + Qi) a; G T;

where Q; = El# x; is the output of the rest of the industry, and w is the competitive wage rate.

We note that in a labor-managed oligopoly, by definition the objective is to maximize the profit
per unit of labor, and thus ¢; is the payoff function, in the language of game theory.

Qoi(wh o 7xn) =

1.2. The marginal profit. This is defined as the rate of change of payoff resulting from only
changing x; and keeping the output of the rest of the industry fixed. In general, the marginal profit
of firm ¢ for our class of models is:

0
o0x;

(1.2)

—— (xip(wi + Q) l;(;l:)li(lh') - ci(:ci)>

and for our particular model it is:

0

(1.3) o

2

)

b o; 5i):_b+,3i

Qi—const (ai(a:i + Qz) a; a; T; a; 52 a; T

1.3. The existence of positive equilibria. The model of labor-managed oligopoly just described
shall be regarded as an n-person game where the set of strategies for each firm is the interval
X; = [0,00) and the payoff function of firm ¢ is ;. Thus, for each firm ¢ and @; > 0, the best
response is obtained as

b ai B }
1.4 z;(Q;) = argmax,, —_——w - — — .
( ) z(Qz) g x; >0 {az(xz n Qz) a; a; T;
For completeness, we state and prove the result from [7] concerning the existence of the above
optimuin.

Theorem 1.1. An interior optimum (i.e. satisfying x; > 0 for all i) exists for conditions (1.4)
iff B; < b. If this condition is satisfied then all positive equilibria of the labor-managed oligopoly
problem exist if and only if

S VA = Vb
=1

If this condition is satisfied then

(1.5) & =



is an equilibrium for every positive §. Moreover, if we require that the payoff be positive for every
firm then § must satisfy the relation

i a; W+ o4

(1.6) §<m1n{w} .

All positive equilibria can be obtained in this way.

Proof. Assuming an interior optimum, the first order conditions are:

_ b n Bi
a; (zi +Qi)?  aix

; = 0.

i
This system of equations has the following solution:

(1.7) T; = iQ,, (t=1,2,...,n).

Vb —/Bi

In order to ensure that z; > 0, we have to assume that 8; < b. The second order conditions are
always satisfied since at the optimum

2b 2,3,' . 2,3i @_
ai(xi-i-Qz')g_ai:c?’ oa;x3 <\/Z 1) < 0.

% %

From equation (1.7) we have

s = zi+Qi = <1+7\/5_\/E) = T \/57

VB

=

and finally,
1 = Z?:lxi _ E?:l\/E

s Vb

If § denotes this optimal value of s then the equations (1.5) is satisfied.
The payoff of firm ¢ at any equilibrium is

(2 &) = b —w— i = b 1—\/& _w
PikTL - - Tn a; 8 a;  a; % a; 8 Vb

a;
which is positive for all ¢ if and only if § is sufficiently small, more precisely, if the inequalities (1.6)
hold. O

1.4. The dynamic model and attractivity. The dynamic model of a labor-managed oligopoly
is constructed by assuming continuous time scale and that each firm adjusts its output continuously
and proportionally to its marginal profit.

The resulting dynamic model is:

(1.8) o = ks (- bz+ ﬁ,2> i=12,...,n
a; s a; T;
where k; > 0 is a constant specified for each i. We also assume that x; > 0 for all ¢, which is
consistent with the physical interpretation of x; as output of the ¢-th firm.
In [7] the existence and local attractivity of the equilibria of this system was shown. The main
result of this paper can be stated as follows:
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Theorem 1.2. Let us assume that fori =1,2,...,n we have B; < b and moreover, > i ; \/Bi = Vb.
Then in dynamical system (1.8) all equilibria form an open ray starting from the origin, given by
the parametric equation

VBi
Vb

This is a strongly attracting invariant set, i.e. every solution z;(t), i =1,2,...,n to the model will
approach one of the equilibria on this ray with an exponential rate of convergence, ast — oo.

T; = s, §>0,2=1,...,n.

The above theorem was proved in [7] using methods of dynamical systems theory concerning the
existence of stable foliations for normally hyperbolic manifolds. This theory is rather complicated
and will not be presented in the current paper, but the interested reader may find an accessible
exposition in [7]. Invariant manifold theory will not be required to understand the results of the
current paper.

The assumption ) " ; v/Bi; = Vb used in Theorem 1.2 is a limitation of the current paper, but
it is necessary to remain in the realm of simple-minded attractivity theory, where attractivity is
understood as convergence to an equilibrium. This assumption will be dropped in our next paper,
which investigates the cases Y i ; /B > vb and VB < Vb. Tt proves that in the first case
the total output of the industry grows to infinity, while the ratio x;/s (i.e. the share of the total
output of the industry for firm ) goes to a definite limit. We will refer to this situation as dynamic
equilibrium. In the case > 1 | /Bi < Vb the total output of the industry shrinks to 0 and multiple
dynamic equilibria are possible. A detailed development of the theory of dynamic equilibria is the
main subject of [10].

2. GLOBAL ATTRACTIVITY OF THE RAY OF EQUILIBRIA FOR LABOR-MANAGED OLIGOPOLY

The main result of this section is the following global version of Theorem 1.2.

Theorem 2.1. Let us assume that for i =1,2,...,n we have B; >0, b >0, 5; < b and
n
3V = Vi
i=1

Then every solution x;(t), i = 1,2,...,n of the dynamical system (1.8) is defined on [0,00) and
converges to one of the points on the ray

s, §>0,2=1,...,n

as t — co. Thus, the ray is a globally strongly attracting set.

Proof. First we notice that the local solution to the system exists for any initial condition xg > 0
because the right hand side of the system is C1.
The first step in the proof is a change of coordinates. The new coordinates are given as follows:

Vb
=7

In these new coordinates the model can be written as

o Vbkb( 11
Y/ 2y

S
4

ZI;-




where s = Y1 ‘/Ey, Let us introduce the following notation:

i=1 "/
Vb kb
VBi a;’
Yi = \/E-
Vb
The main point is that s is a convex combination of the coordinates y;, i.e. > i~ ;7 = 1. The new
system of differential equations can be written in a simplified form:

. 1 1
(2.1) 9 = A (—s—2+ )

y?
n
s = Z Vili-
=1

It is also quite clear that the equilibria of this system are the points where y; are all identical.
Let us introduce two functions, M, m : R* — Ry via the following definitions:

N o=

M(y) = maxy;
m(Y) = lrgiélnyz

We claim that M is a decreasing function of time and m is an increasing function of time along
any trajectory. First we show that M decreases along the solutions of our model.
For any fixed y € R, let

(2.2) I(y) = {7:1<j<n,y;=M(y)}

i.e. this is the set of those indices that the maximum is attained. We claim that g;(t) < 0 for every
Jj € I(y(t)). Indeed,

n n
s = Yy <y wM(y)=M(y) =y
i=1 i=1

Moreover, the equality holds only if v; = 0 for all j ¢ Z(y). As we assume that all 7; are positive,
this happens only when Z(y) contains all j in the range 1 < j < n, i.e. when all y; are equal and
y is in the equilibrium set.

Hence, if y; = y;(t) is a solution of our model defined on some interval [0,a) then for every
t € [0,a) we have:

. 1 1 1 1
(2.3) Ui =i (_s_2+y_2> <X\ <—?+?> =0
j i Y5

for j € Z(y). Moreover, the equality holds for all j only when y(¢) is an equilibrium.

We observe that the set Z(y) is an upper semi-continuous, set-valued function of y.

We recall that a set-valued function f : X — 2¥ from a topological (or metric) space X to the
power set 2V of another topological (or metric) space Y is called upper semi-continuous if for any
xo € X, and any open set O C Y containing f(xg), then there exists an open set W C X containing
xo such that for every x € W we have f(x) C O. If Y is a discrete topological space, i.e. every
subset is open, then we can only consider O = f(x¢) in the above definition, and thus obtain the
following abbreviated condition of upper semi-continuity: for every xg € X there is an open set
W C X containing x¢ such that for every x € W we have f(x) C f(xo). For a nice, comprehensive
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introduction to general topology including upper semi-continuity, the reader may consult [3], but
most advanced textbooks on general topology will cover this subject.

Upper semi-continuity means that the set Z(y) can only decrease in a small neighborhood of y,
and never increase. More precisely, let
(2.4) e=¢(y) = min {M(y) —y;}

J¢L(y)

Thus, € is the gap between all maximal values of y; and all remaining values of ;. We note that € is
well defined only when the minimum is not over an empty set, i.e. when y is not in the equilibrium
set of our model.

We claim that if z € R and ||z — y||co < €/2 then

I(z) C I(y).

Here ||z — y||oo denotes the sup-norm of the vector z —y, i.e. maxj.i<j<n|2; — y;|. Indeed, M is a
weak contraction, i.e. for all w1, wo we have

|M(w1) — M(w2)| < [|[w1 — Wal|oo-

Thus, M(z) > M(y) — €/2. Also, every individual coordinate is a Lipschitz function of y with
constant 1, i.e. |z; —y;| < ||z —y|| < €/2. Thus, in particular z; < y; + €/2. Hence, if j ¢ Z(y)
then z; <y; +€/2 < M(y) —e+¢€/2 < (M(z)+¢€/2) —e+¢€/2 = M(z). Thus, j ¢ Z(z). The upper
semi-continuity of the function Z(y) has been shown.

Thus if y(¢) is a solution of our system defined on some interval [0,a), and y(¢) is not an
equilibrium, then the function g(t) = M (y(t)) is strictly decreasing on the interval [0, a). We apply
a version of a classical argument in real analysis, which is a proof by contradiction.

Let us suppose that g(¢) is not strictly decreasing on its domain [0, a). Let us define

to = sup{7 € [0,a) : g(t) is strictly decreasing on [0,7)}.

Clearly, t9 < a. By continuity of the solution y(t), there exists § > 0 such that for every ¢t €
[to, to + 0)

[y (&) =y (t0)[loo < €/2

where € = €(y(to)) (cf. (2.4)), and in particular Z(y(¢)) € Z(y(to)). There is also a number
41 € (0, 6) such that for all ¢ € [tg,to + 61) and j € Z(y(to)) we have y;(t) < y;(to). Hence,
g(t) = M(y(t) = max y;(t)
= max ¥;(t) < max y;(t
s Y10 = By W
< max ¥Y;(to) = g(to)-
max y(to) = g(to)
We note that we used the upper semi-continuity of Z(y) in the above calculation: we needed
Z(y(t)) € Z(y(to)).- The above contradicts the definition of ¢y, as the function would be also
strictly decreasing on [0,%9+61). Hence, the function g(¢) is strictly decreasing on its entire domain
[0,a).

In a similar fashion, we show that m strictly increases along integral curves which do not start
at an equilibrium. Of course, both M and m remain constant along solutions starting at an
equilibrium.

The above information is sufficient to show that every solution y(¢) can be extended to ¢ € [0, ),
i.e. the system is forward complete (see Appendix C). In fact, every solution y(¢) lies in the set

{y : m(y(0)) <m(y) < M(y) < M(y(0))},
6



which is a Cartesian product of closed intervals, and thus is a compact set in the Euclidean space.
We observe that Lemma C.3 of Appendix C implies that every solution y(¢) is defined on [0, 00),
i.e. the system is forward complete.

At this point of the proof we have two options. One is to apply a version of LaSalle’s Invariance
Principle (see Appendix E) or a direct argument.

It remains to be shown that the ray of equilibria is a strongly attracting set, i.e. for every solution
y(t) defined for ¢t € [0, 00) the limit lim; ,~ y(¢) exists and belongs to the ray of equilibria.

First, let us explain how our result follows from Appendix E. Let S be the ray of equilibria and
let V(y) = M(y). The set S is trivially forward invariant. The function V is strictly decreasing
and Vg is injective. Also, we have just shown that every trajectory remains in a compact set.
Thus the strong attractivity of S follows immediately from Theorem E.1.

As an alternative, without any concern for generality, we present a direct proof of the same
conclusion, the global attractivity of the ray of equilibria.

Both limits, M = lim;_,o, M(y(t)) and m = lim;_, m(y(t)), exist as limits of monotonic and
bounded functions. We claim that they are equal. The proof of this claim is by contradiction. Let
us suppose that M # m. For every € > 0 the set

U={yeR" : m—e<m(y)and M(y) < M +¢€}.

is open and bounded. Moreover, by definition, for sufficiently large ¢ the point y(¢) is in U.. Thus
any limit point of the solution y(¢) lies in the intersection of all U, which is the compact set

B={yeR" : m<m(y)and M(y) < M}.

Let zg € B be any limit point of the solution y(¢). Such points exist by compactness of B. Thus,
there exists a sequence of times ¢, — oo such that y(¢,) — 2zo. In view of continuity of the
functions M and m, we have M(zg) = M and m(zg) = m. We assumed that M # m, and thus
Zo is not an equilibrium. Let z(¢) be the solution with initial condition z(0) = zg. The function
M (z(t)) is decreasing, and thus there exists § > 0 and 7" > 0 such that M(z(T)) < M(zo) — 6.
Continuous dependence of solutions on initial conditions implies that there is a neighborhood V'
of zg such that for any wo € V we have M(w(T)) < M(wo) — ¢ and m(w(T)) > m(wq) + 9,
where w(t) is the solution to the initial value problem with initial condition w(0) = wg. From
the monotonicity of M and m along any non-equilibrium trajectory we also conclude that for
all ¢t > T we have M(w(t)) < M(wp) — ¢ and m(w(t)) > m(wg) + . In particular, for every
natural number n such that y(¢,) € V, there is a natural number k such that t,.x — t, > T,
which implies M (y(tnix)) < M(y(tn)) — 8 and m(y(t,ix)) > m(y(t,)) + 8. This contradicts the
convergence of the sequences M (y(t,)) and m(y(t,)). Thus, we have shown that M = m, which
implies that B consists exactly of one point zy, which is automatically an equilibrium. Therefore,
lim;, 00 y(t) = zo.

[l

3. EXPONENTIAL CONVERGENCE TO THE EQUILIBRIUM

3.1. The framework for exponential convergence. In this section we will demonstrate that
the convergence to the equilibrium in Theorem 2.1 is exponential.

This local result has been shown in [7] by an analysis of the spectrum of the linearized system
at the equilibrium. The current result is satisfying in other respects. For instance, it provides a
constructive bound on the exponent, given explicitly in terms of the parameters of the system.

The main idea of this section is to introduce the function

V(y) = M(y) —m(y)
7



and prove an estimate V < —aV valid uniformly on the entire space. This implies that V(¢) <
V(0)e™ and thus V(¢) — 0 exponentially.

The technical difficulty is that V is not differentiable. Thus, we must make weaker statements
which will imply the same conclusion.

The main observation leading to the proof of the exponential convergence is in the following
lemma:

Lemma 3.1. Let
) 2 min; \;
a=aly) = ——.
M(y)?
For everyy € R* and every pair of indices i and j such that y; > s > y; we have:
Ui — U5 < —alyi — yj)-

Proof. For each ¢ such that y; > s we have the following estimate of y;:

AU AR N 0 DU IS S S
V= T2 2) " T2 5 wi—9)?
2)\1' 2>\i

= - yi —8) < ———=(yi — 5).
(40— Y= Tap
(We note that we used the Mean Value Theorem, and thus 6 € [0,1].)
Similarly, for each j such that y; < s we have

SR N0 U | DY A B S
A W) A AR ORI RN

2); 2
BRI T

Thus, we have the following two inequalities:

% < —a(yi—s) as y; > s,

U > a(s—y;) as y; < s.
Together, they yield our lemma, as

Ui — 95 < —aly; —s) —a(s —y;) = —aly; — y;)-
]

3.2. Support theorems from real analysis. Let R = RU {—o00, 0} is the extended line.

In order to handle non-differentiability of V we introduce the right-upper derivative. In the
current section we develop a calculus of right-upper derivatives to a somewhat greater extent than
required by our specific model. Hence, the reader may decide to skip this section upon the first
reading, or just become familiar with the next definition and Lemmas 3.9 and 3.10, which are the
only results needed in the remainder of the paper. The notion of right-upper derivative is only
used in Lemma 3.11, and the conclusions of Lemmas 3.9 and 3.10 are only used in the proof of
Theorem 3.13.

Definition 3.1. Let u: [p,q) = R. Let U = u=(R). We define two functions, D:gu :U — R (the
§-right-upper derivative) and Diu : U — R (the right-upper derivative), as follows:

(a) For every § where 0 < § < q — p, the d-right-upper derivative of u at a point t € U is defined
by:

u(t') — u(t
(D}u)(t) = sup M
teirs) t—t
8



We note that D}u(t) 18 decreasing as function of 4.
(b) The right-upper derivative of u at t € [p,q) is defined by:

(D'u)() = lim Dfu(t) = inf Dju(?)

We will write D}u(t) and Du(t) in place of the more precise notation (D}u)(t) and (D1u)(t).

We note that D}u : [p,q — 6] = R and Dfu : [p,q) = R are well-defined for every function
u: [p,q) = R. In what follows, we will assume the customary extension of arithmetical operations
and order relations to the infinite values. The only undefined operations are oo — oo and 0 - oo and
their equivalents.

We will need some analogues of theorems from differential calculus:

Lemma 3.2. Let u,v : [p,q) — R be two arbitrary functions, U = u'(R), V = v~1(R) be the two
sets where these functions assume finite values, and let > 0 be an arbitrary positive constant. Let
6> 0.

(1) For everyte U: D}(Gu) (t) = QD}Lu(t) (positive homogeneity);

(2) For everyteUNV: D}(u +)(t) < D:gu(t) + D:gv(t) (subadditivity);
(3) If in addition u,v > 0, and v is increasing, then for everyt € UNV:

D} (uv)(t) < a(t)D}v(t) + v(t) D}u(t)

where @ is an decreasing function defined by u(t) = supycp g u(t'). In particular, if u is
decreasing, we have:

D} (uv)(t) < u(t)D}v(t) + v(t) D}u(t)

(subadditive product rule);

4) The above properties hold for D} replaced with DY, for everyt € U ort € UNYV.
)
(5) If u,v > 0, at least one of u and v is right-continuous att € U NV, then

DT (uv)(t) < u(t)Dlw(t) + v(t)DTu(t)

(subadditive product rule);
(6) If u is differentiable at t € U in the usual sense then Diu(t) = u/(t).

Proof. (1)
AN n _
Di(ow)(t) = sup Gu(t’) — Bu(t) _ 9 sup u(t) —u(t) _ 9D 1u(t)
) t—t H—t [
t'e(t,t+9) t'€(t,t+6)
(2)
/ 1 _ _
D}(u t0t) = sup u(t') +v(t ,) u(t) — v(t)
1 e(t,t+6) -t
1\ _ n _
< ( sup U(t), u(t) + sup v(t)l v(t))
tetrs) Ut vetrs) t—t

= Dju(t) + Dlu(t)
9



Djw)(®) =  sup ““')”“2 — il
— sw w(tv(t") — u(t)v(t) + u(t)v(t) — u(t)v(t)
e (t,t46) t'—1
_ o(t') —v(t) u(t') — u(t)
- tfes(lffi(s)( ut) = T )
v(t') —v(t) u(t') — u(t)
< o (w0 G i s MO0
s (w28 =@ o pty,
= t’e(t,g-d)< 0= )+ (B)Dsul?)

= a(t)D}v(t) + v(t)D}u(t).

(4) Trivial.
(5) Without a loss of generality, we assume that u is right-continuous at ¢. From (3), for V§ > 0

Di(w)(t) < sup ((t) vt) = t()>+v(t) sup ) u®)

e(t,i+6) ve@trs) Pt
If DTv(t) < 0, then 35 > 0 such that D}v(t) < 0 whenever 0 < § < §y. Thus

Di(uwo)(t) <  inf u(t) sup M+v(t)D}u(t)

T UE(Lt+6) ve(tirs) Ut
= inf u()Dlv(t) + v(t)Dlu(t) .
inf | u(t)Dlo(®) + v(t) Dlu(t)

Letting § — 0 and with u being right-continuous at ¢, we have
Df(wv)(t) < wu(t)D'u(t) +v(t)Dlu(t).

If Dfv(t) > 0, then D}v(t) > 0 for V6 > 0. There are two cases. If 3§p > 0 such that D:gov(t) =0,
then ng(t) =0 for V0 < § < §g, thus

. )~ o(t)
D]L t) < f t 1)(7 tDJr t
f)®) <, dfut) s S5 v Dhutt)

=  inf YDlw(t ) Diu(t) .
t’eg,lt—f—é)u() sU(t) +v(t) Dyu(t)

Otherwise, D}U(t) > 0 for V§ > 0. Thus

,_
Diw)®) < sup wu(t) sup =0 L )Dhu)
e (tt+6) te(tirs) t—t

= sup u(t)D}u(t) + v(t)D}u(t) .
t'e(t,t+6)

Letting § — 0 in these two cases and with u being right-continuous at ¢, we have
Di(uv)(t) < wu(t)Dlw(t) +v(t)Diu(t).

(6) Trivial. O
10



The reason for this definition is the following property which is lacking for the ordinary differ-
entiation:

Theorem 3.3. Let u; : [p,q) — R, | € L, be any family of functions (finite, countable or un-
countable) and let u = sup;cpu;. Let 0 < § < ¢ —p. For allt € [p,q — 4] such that u(t) € R, we
have:

D:gu( t) < sup Dgul( t).

Proof. For any two families of numbers (a;);c, and (b);ec we have:

supa; — sup by < sup (a; — by) .
leL leL lel

Therefore, for any fixed t,t' € [p,q), and t < ¢

supyep u(t') — supyep ui(t)

uy (t’) — U (t) '

<s

7 —t Syt —t
Thus,

I — —

u(t) —u(®) _ - w®) )

t—t er  t—t
Hence, for any fixed § > 0:

) —u(t ) —w(t

sup u4( )/ u(t) < sup supiul( )/ ul()
te(ttre) U —t ve(ttre)lec U —t

The order of the suprema can be interchanged, and thus

N _ I _
sup u(t ), u(t) <sup sup w(t ), ul(t)7
ve@irs) -t leL te(tits) t -t
which means D}u(t) < sup;ep D}ul (t). O

Corollary 3.4. (1)

Dfu(t) < lim sungul( t).
6—0 leL

(2) If Déul( ) converge to DVu(t) uniformly inl € £ as § — 0, then
Diu(t) < sup Dhuy(t).
leL

Remark 3.5. The uniform convergence condition in part (2) of Corollary 3.4 is necessary in consid-
eration of the following example.
We let £ ={1,2,...} and define u; on [0, c0) via

0 if0<t<1/l,
1

w(t) =
Then Du;(0) = 0 for all I € £. On the other hand, sup;c, w/(t) = t and thus Df(sup;c, u;)(0) = 1
Therefore, sup;c DTu;(0) = 0 < 1 = DT (sup;e, w)(0)-

Let F = F(L) be the family of all finite subsets of £. The set F is ordered by inclusion, and the
pair (F,D) is a directed set, i.e. for every Fy, Fy € F there is an F such that F' D Fy, Fy (obviously,
F = Fy U F5 will do in our case, but in general the set F may be ordered by a relation that has
nothing to do with set theory).

11



For directed sets, there is a suitable notion of a limit. Let (ar)rer be a family of numbers or
vectors in a Banach space and let a be an element in the same space. We will write

a= lim ap
FeF

iff for every € > 0 there is an element Fjy € F such that for every F € F, F = Fy implies

larp — al < e.
(In the case of Banach spaces, | - | would mean the norm.) Note that the limit defined in this way
is unique.

In the case of ap being real numbers, or elements of a partially ordered Banach space, there is a
notion of a monotonic sequence. For instance, (ap)pcr is increasing if Fy = F» implies ap, > ap,.
For real numbers, a bounded monotonic sequence always converges. Many partially ordered vector
spaces also have this property of order-completeness. For instance, £*° with sequences ordered
coordinate-wise is order-complete. It will be convenient to say that

lim ap = 00
FeF

when for every a (a number or vector) there is an Fy € F such that for every F > Fy we have
ar > a. It is true for real numbers that every increasing sequence has a finite or infinite limit.
In the case of partially ordered, order-complete vector spaces there is an issue of whether for any
increasing sequence (ar)per the limit is equal to the supremum (lowest upper bound), i.e.
}1&1__(11: = ;161;;_@1:.

We definitely need to assume that the order in the vector space is a continuous function. If we also
assume that supremum exists for every bounded sequence, we essentially assume that our partially
ordered vector is a Banach lattice.

When the sequence is either real-valued or assumes values in an order-complete partially ordered
vector space, the notion of upper and lower limit can be developed. For instance,

. def .. .
limsupar = lim  sup ap = inf sup ap,
FeF Fo€F FeF,FrFy Fo€F peF,FrFy

. def . . .
liminfap = lim inf  ap = sup inf ap.
FEF Fo€F FEF F-Fy FoeF FEF . F-Fy

We note that every sequence from above has an upper limit.

Theorem 3.6. Let (F,>) be a directed set and let ur : [p,q) — R, F € F be a family of functions,
such that the pointwise limit

u = lim up
FeF

exists. Let 0 < § < q—p. For allt € [p,q — 0] such that u(t) € R, we have:
Dlu(t) < liminf Diup(t).
su(t) < liminf Dyup(t)

Proof. Let us consider a fixed ¢’ such that t < t' <t + 4. We have

u(t') —u(t) — lim up(t') —up(t)
t—t Fer t—t ’

Also, for any fixed F'

ur (t') — ur(?)
Gy < Djur(t).
Thus,
t') — t
lim inf ur(t) —ur(t) < liminf D}uF(t).
FeF -t FeF

12



In view of convergence, the left-hand side is equal to
) —
iy YF () —ur(?)
FeF t—t
and thus we have:

u(t') —u(t)

< hmlnf DduF( )-

th—t
Hence, also
t) —u(t
D}u(t) = sup M < lim inf D:guF(t).
te(ttre) Ut FeF
This completes the proof. O

Definition 3.2. For any family of numbers (a;);cc and in all cases (finite, countable and uncount-
able) we define:

lel
We say that (a;)icc is summable iff the limit exists.

The reader may regard this expression as definition in the case of uncountable sets £, and for
countable sets L this definition of summability is consistent with the ordinary definition of absolute
convergence of a series.

Moreover, one can show that even if £ is uncountable then for this generalized sum to converge
it is necessary that the set {I € £ : a; # 0} be countable. Indeed, let S =3, . a;. Let e, N\, 0.
We pick a sequence of finite sets F,,, n = 1,2,..., such that for every n and for every F' C L such
that F' D F,, we have

Zal—S < €.

leF

In particular limy, o0 Y ¢ F, =95. Let Lo = Un2, F,. This set is countable as a countable union
of finite sets. We claim that a; = 0 for | € £\Ly. Let us prove this by contradiction. Let us
suppose that for some lg € £\Lg. Let G, = F,U{lo}. Clearly, > ;.o a; = ai, + ;cp i, and thus
lim,, oo Zlecn a; = ajy +limp 00 ) e Fa=aq,+5 # S. For sufficiently large n, this contradicts
the definition of F,.

Also, in case of non-negative a;, we have:

We will need the notion of the upper sum of a generalized series of numbers.

Definition 3.3. Let (a;)icc be a family of real numbers or elements of a partially ordered, order-
complete vector space. Then the upper sum of our sequence is

We will denote the upper sum by
T
Z aj.
lel
13



Intuitively speaking, the upper sum is close to the ma.x1mal partial sums over large finite subsets.
If u; : [p, g — R is a family of functions then the sum 31 1ec W is understood pointwise, i.e.

(Z* u,) 0]

lel lel

Theorem 3.7. Let F be a directed set with the order relation =. Let up : [p,q) = R, F € F, be
any family of functions (finite, countable or uncountable) and let

u = limsup ug.
FeF

Let 0 < § < g —p. For allt € [p,q — 8] such that u(t) € R, we have:
D:;u( ) < hmesup DJ;UF( ).

Proof. for every Fy € F we define pointwise:

VFy = sup Urp.
FeF,F-Fy

By Theorem 3.3, for every Fy € F we have:

Dlvg,(t) < sup  Dlup(t).
FeF,FrFy

We notice that limp,cr vr, exists as a limit of a decreasing sequence, and equals u. Therefore, by
Theorem 3.6,

D;u(t) < ll}l%lelnfdepo

IN

liminf sup DTth
Fo€F FeF,FrFy 20r ()

lim sup DTth
FocF FeF,Fr-Fy d ®)

= hmsupDEUF( )-
FeF

O

With the notion of upper sum, we are finally able to formulate a subadditivity theorem for the
upper derivative.

Theorem 3.8. Let u; : [p,q) = R, | € L, be any family of functions (finite, countable or uncount-
able). Let 0 < 6 < q —p. For any constants §; > 0, | € L, and for any t € [p,q — 8] such that the
sum ZTleﬁ Oruy(t) is finite:

D} (ZT 91“1) (t) < ZT engul(t)

lel leL

This inequality should be understood in the following sense: if the right-hand side is finite, then the
left-hand side is finite and the inequality holds.

Proof. We note that by definition, for every subset £’ C L the sum of functions ZTle Oy is
defined by pointwise summation:

<ZT 01114) (t) = Z)r 01ul(t)

lel! lel!
14



For every F € F, let us define vr : [p,q) — R via:
VFp = Z 01ul .
leF

In view of our definitions,

v = limsupvp = ZT Oruy
FeF(L) el

Also, in view of finite subadditivity, we have:

Dlvrp(t) < 6iDfu(t).
leF

By Theorem 3.7,

D}u(t) < limsup D}vp(t) < limsup > _ 6,D}(t) = ZT 6,D} ().
FeF(L) FeF(L) 1cp leL

O

In the next lemma it will be useful to have the notion of left-upper limit of a function u :
(a — €,a) — R, defined as follows:

lim sup u(t) M im  sup u(t).
t—a(—) 6-0¢c(a—6,a)

A function u : (a—¢, a] — R will be called left-upper-semicontinuous at a iff u(a) < limsup,_,,_y u(t)-
If a function is left-upper-semicontinuous at every point of its domain, it will be simply called left-
upper-semicontinuous.

Lemma 3.9. Let u: [p,q) — R be left-upper-semicontinuous on (p,q).
(a) If there is some constant K € R such that for allt € [p,q):

Diu(t) < K
then for every t1,t2 € [p,q) we have
’u,(tz) — u(tl) < K(tz — tl);

(b) Let in addition u > 0, u is continuous. If there is a ¢ € R such that for each t € [p,q)
Diu(t) < cu(t)
then for every t1,t2 € [p,q), t1 < t2, we have:
u(te) < u(ty) exp(e(te — t1)).

Proof. (a) We note that it is sufficient to prove (a) in the case when ¢; = p because if ¢; > p, we
may simply replace p with ¢1. We will prove that for every K1 > K and every t2 € [p,q)

u(te) — u(p) < Ki(t2 — p)-

Since K7 > K is otherwise arbitrary in our argument, (a) will follow. Let us define ¢3 € [p,q| in
the following way:

t3 =sup{t2 € (p,q): Vt € (p,t2) %Z(p) < Kl}.
15



As for some § > 0 we have D}u(p) < K7, the set in this definition is non-empty. Thus t3 > p. Since
u is left-upper-semicontinuous, we have
t3) — t) —
u(ts) — u(p) < limsup u(t) — u(p) < K.
t3—p tots(-) t—P
We claim that ¢3 = ¢ which implies (a). Let us prove this statement by contradiction. Thus, let
us assume that t3 < gq. There exists § > 0 such that D}u(tg) < Kj. From the definition of t3, there
exists t4 € (t3,t3 + &) such that

t —
u(ts) — u(p) > K.
ta—p
On the other hand,
u(ts) — u(p) _ u(ts) —u(ts) ta—ts  u(ts) —u(p) ts—p
ta—p ta—t3 ta—p i3—p ta—p

ta — —
4—t3 K- t3 —p
t4 —p t4 —t
This is a contradiction. Thus t3 = g, and the proof of part (a) is complete.
(b) Consider the function v(t) = exp(—ct)u(t). By the subadditive product rule, we obtain:
Div(t) < —cexp(—ct)u(t) + exp(—ct)Dlu(t)
< —cexp(—ct)u(t) + exp(—ct)cu(t) = 0.

K-

= Kj.

Thus v is decreasing from (a). Hence, for every ¢1,t2 € [p,q), t1 < t2, we have u(t2) < u(t1) exp(c(ta—

tl)).
O

Lemma 3.10. Lety : [p,q) = Y be a path in a Banach space Y. Let (¢1)icc be a bounded set in
Y*. If y(t) is continuous at some t € [p,q) and y'(t) exists then the function

u=sup(p;oy)
lel

possesses the right-upper derivative DTu(t) and

Dlu(t) < sup ¢i(y'(t)).
leL

Proof. Let C = sup; ||¢i]|. By definition of differentiability of y(t), for every ¢ > 0 there is 6 > 0
and a function z : (0,0) — Y such that if ¢’ € (¢,¢ + §) then

y(t) =y(®) +y' )t —1) + (' - t)z(t)
where ||z(t')|| < € for each ¢’ € (¢,t + §). By the linearity of ¢, for every | € £ we have:

oyl = ) _ o5/ (e)) = ).
Therefore
ei(y(t')) — ey ()
t—t

—a(y' 1) = le(=zE))] < [@llllz(E)]] < Ce.

In particular,
oy (t)) — iy (t))
t—t
Taking the supremum over [ € £ we obtain:

(3.1) sup 901()’(15/))/ —aly(®) sup iy’ (£)) + Ce.
leL -1 lec
16
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Also, for any two families of numbers (a;);c. and (b;);c. we have:
sup a; — sup b; < sup(a; — by) .
leL leL leL
Thus,
u(t) — u(t) supiec Pi(y () — supie wi(y(t))
t—t t—t
supie [0u(y (') — eu(y (2))]
t—t
, p—
~ ap POl )), ei(y(t))
leL -t

sup ¢ (y'(t)) + Ce.
lel

(In the last step we used inequality (3.1).)
Hence, from the definition of Dfu(t) and D}u(t) we obtain:

IN

I [e—
D'u(t) < Dfu(t) = sup M < sup p(y'(t)) + Ce.
vetirs) Ut leL

As € > 0 was otherwise arbitrary, we also obtain
D'u(t) < sup o (y'(t))
lel
which is the conclusion of the lemma. 0
3.3. The proof of exponential convergence.

Lemma 3.11. For every solution y(t) of (2.1) defined on an interval [p,q| and every t € [p, q] we
have:

DNV oy)(t) < —aly()(V oy)(?).
Proof. We note that

Vy) =, max (%~

When V(y) > 0, i.e. when y is a non-equilibrium, we define the set £ = L(y) to be the set of
these pairs of indices (i, ) for which the above maximum is attained, or, equivalently, y; = M (y)
and y; = m(y). Just as for the earlier defined function Z(y) in Eq. (2.2), the set-valued function
L(y) is upper semicontinuous. Hence, there is § > 0 such that if z € R" and ||z — ¥||cc < & then
L(z) C L(y). Let us pick € > 0 such that for all ¢’ € [p,q] N (t — €,t + €) we have y(t') € Bs(y(t))-
Thus, for all ¢’ € [p,q] N (t — €, t + €) we have:
!
(3'2) V(Y(t )) (i,j)lélg(};r(t))(yl y])-
We will apply Lemma 3.10 in order to show that
HV o _ N

DiVey)#) = max (G~ 1)

For any (i,j) € L, let ¢(; ;) be the linear functional on R" defined by the formula:

i) (Y) = Yi = Yj-
Clearly, |l¢¢,j |l = 2 in the norm of (R®)*. Equation (3.2) can be expressed in a form suitable for
an application of Lemma 3.10:

V tl = a) i3 .
BED = max ) e ¥)

17



Thus, Lemma 3.10 implies that

DTVoy t)) £ max A (1) = max
Vo)) < ey e ) = 28
With the help of Lemma 3.1 we conclude that

(i (t))(yi —9;) < —a(y(t)V(y(t)),

(% — 95)

thus
DYV oy)(t) < —a(y(®)V(v(t).
[l

There is a more geometric interpretation of the function V and it is provided in the following
simple lemma.

Lemma 3.12. Let N be the the ray of equilibria of system 2.1, i.e.
N ={(e,¢c,...,¢):c€R,c >0}
Let dist(y, N) be the distance of y from N, measured with respect to the norm || - ||co, i-e.
dist(y, N) = inf [y — o]
Let U be the set of positive vectors in R™:
U={yeR":Vie{l,2,...,n} y; > 0}.
Then for everyy € U we have the following alternative definition of V(y):
V(y) = 2dist(y, N).

Proof. Indeed, it is easy to see that the minimum distance in the || - ||c norm between y and N is
achieved for z € N for which z; = 3(M(y) + m(y)) for i = 1,2,...,n. It is easy to see that
1 1
Iy = zllo = 5 (M(y) —m(y)) = 5V (¥)-
O

Theorem 3.13. (a) For every initial condition yo € U there is a unique solution y(t,yo) of (2.1)
with the initial condition yo (i.e. y(0,¥0) = yo) defined on the interval [0,00), and for all t > 0,
y(t,y0) € U. Thus, there exists a semi-flow ' : U — U, t > 0 defined by the formula

©'(yo) = y(t,y0)-

(b) Let yo € U be an initial condition and let ag be the following constant:

2min; \;

M(yo)? "

There is a unique equilibrium'y such that if y(t,yo) is the solution of (2.1) with the initial condition
Yo defined on the interval [0,00), then for allt > 0:

(3.3) ly(t,¥0) = ¥lloo < (M(yo) — m(yo)) exp(—aot) = 2dist(yo, V) exp(—aqt).

ag =

(c) The mapping r : yo — ¥ is a continuous retraction of U onto the ray of equilibria
N ={(¢,c,...,c): c€ Ryec > 0},
i.e. it is a continuous map v : U — N such that r|N = idn. Moreover, for everyyo € U:

Iyo = 7(yo)lleo < 2dist(yo, N).
18



(d) Let F : U — R™ be the vector field of the system (2.1), i.e. F(y) = (Fi(y), Fa(y),- .-, Fu(y))

and the coordinate mappings F; : U — R fori=1,2,...,n are given by the formulas:
1 1
FEy)=\N|-5+=5]-
@) =X ( a7 y?)

Let y € N be arbitrary and let 0 = o(DF(y)) be the spectrum of DF(y) (the Frechét derivative).
Then o = {0} U 09, where

oo C{z€C:R(2) < —ap}-
The zero eigenvalue is simple and it corresponds to the eigenvector vo = (1,1,...,1), which is
tangent to the ray of equilibria N, while oq is the spectrum of DF(y) restricted to some eigenspace
V' of codimension 1 transversal to the line of equilibria. In particular, such an eigenspace exists.

Proof. (a) The forward completeness of the solution has been proved in Theorem 2.1 and thus a
semi-flow for every initial condition yo € U exists..
(b) For any two numbers m < M we define
P(m,M)={y €£>* : m <m(y) and M(y) < M}.
In view of the fact that M (y(¢)) and m(y(t)) are monotonic, for every ' € [t, c0)

y(t") € P(m(y(t), M(y(t)))-
Also, limy_yoo M (y(t)) = lim; 0o m(y(t)) from Section 2. Thus,

{7} = P(m(y(1), M(3(2))).

>0

We also observe that the £*°-diameter of P(m, M) is M — m, in particular,

ly(®) = Fllo < M(y(2)) —m(y(¢t)) = V(y(?)).
Since M (y(t)) < M(yo), we have
—a(y(t)) < —ao
for all ¢ > 0. From Lemma 3.11,

DI(Voy)(t) < —ao- (Voy)(d).

Besides, V(y(t)) = M(y(t)) — m(y(t)) is continuous because M (y(t)) and m(y(t)) are obviously
continuous. From Lemma 3.9, we have

V(y(t)) < V(yo) exp(—aot).
Therefore, the proof of part (b) is complete.
(c) The only part needing a proof is that of the continuity of . But this follows easily from the
inequality (3.3) of part (b). This inequality means that r(yo) = lim;—c ¢*(y0) and the limit is

locally uniform on U. Thus, r is continuous as a locally uniform limit of continuous functions.
(d) We recall that

o0

tk
exp(tA) = EAk
k=0
is well-defined for every bounded linear operator A. We have the following well-known equation,
connecting the linearization of the flow with the linearization of the vector field at an equilibrium

(see [2], or [1] which also covers the infinite-dimensional case):
(3.4) Dy'(y) = exp(tDF(y)).
Since our model is a homogeneous system, it is true that any vector tangent to N (which is also in

N in this case) is an eigenvector of DF(y) with eigenvalue 0 (see [7]), and therefore an eigenvector of
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Dy'(y) with eigenvalue 1 from (3.4). As the vector vg = (1,1,...,1) € N is an eigenvector of both
Dyt(y) (with eigenvalue 1) and of DF(¥) (with eigenvalue 0), we may consider the corresponding
induced linear operators on the quotient space W = R"/N = R"/span{vo}. We will use the same
symbol for the induced operator as for the original operator. Let oy be the spectrum of the operator
induced on W by DF(y). We claim that oy C {z : Rz < —ag}, which implies all other claims, in
particular, simplicity of 0 and the spectral decomposition o = {0} U gg. We will prove our claim
by contradiction. If the claim is false for some ¥ € N then the spectral radius of Dy!(¥), which is
equal to exp (t SUD, ¢ %z), is greater than exp(—tay). Let us pick a1 < ag such that the spectral
radius of Dy!(¥) is also greater than exp(—ta;) for ¢ = 1. We know that the spectral radius of
a bounded linear operator A can be also expressed as limsupy_, o, || A*||/* (e.g., see [8]). We will
assume that all norms are calculated with respect to the norm induced by || - ||, i-€. for any vector
wew:

Wl = inf [|V]ec.

The reader should remember that w is an equivalence class of vectors, where two vectors v, vy are
equivalent if there is an s € R such that vi — vo = svy. Thus, the notation v € w makes sense.
Furthermore,

limsup || D! (3)|[/* > limsup || D" (3)||'/" = limsup | (D" ()" | > exp(~an),
—00 n—oo n—oo
where the equality is from the fact that

exp(A + B) = exp(A) exp(B)

whenever the bounded linear operators A and B commute.
Thus, there exists arbitrarily large ¢ such that

D' (3)] > exp(—ait).
For reasons which will be clear shortly, we fix a ¢t so that
exp(—aut) > 2exp(—agt)

which is possible in view of a1 < . More explicitly, we pick ¢ > In2/(ag — a1).
Hence, from the definition of the induced norm of a bounded linear operator there is a non-zero
vector w € W such that

IDg' (7)wll > exp(—cat)|w].
Let v € w be a vector of minimal norm. We have for all s € R:
1D (¥)v + svolloo > exp(—a1t)[|V|oo.
We also have for every € > 0 (using differentiability of ¢! for a fixed ¢ only):
Py t+ev) = ¢'(F)+De'(F)(ev) + o)
= ¥+eDp'(F)(v) + o(e).
Hence, for every s € R:
l¢* (¥ +ev) = F + svolloo 2 [[eD@"(F) (V) + svo + o(€) || = eexp(—ant)[[v]|eo + o(e).
Let us choose s = s(€) so that § — svg = (¥ + evp). In fact, s = —e. By the inequality of part (b),
o' (7 + ev) — § + 5Vo|oo < 2dist(F + ev, N) exp(—apt) < 2¢||v||oo exp(—apot),
where the last inequality comes from the fact that
e|lv| = GlzTéljlvl v +z| = Izl’éljl\f[l |lev +z|| = ;l’él]]\f]l |y + ev —z|| = dist(y + ev, N).
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Combining the two inequalities, we obtain
eexp(—a1t)|[v]|oo + 0(€) < 2€[|V||oo exp(—cxot).
Dividing by €||v||co and passing with € — 0 we obtain:
exp(—ait) < 2exp(—apt).

This inequality contradicts our choice of ¢, and thus the proof of part (d) of our theorem is complete.
O

Remark 3.14. Another proof of the spectral estimate of part (d), based on the theory of normally
hyperbolic invariant manifolds, can be found in [7]. However, the reader may find the direct
argument included in the above proof more elementary.

4. A NON-SHRINKING THEOREM

Even if the attractivity condition vb = Z;‘L:I +/Bj is not satisfied, but instead just Vb <
Z;’:l \/Bj, then the economy based on the labor managed oligopoly does not shrink, i.e. the
production never goes to 0.

Lemma 4.1. Let us consider the system (2.1) and the relevant notations. Let us assume v/b <
> j=1+/Bj so that

n
def
yEYI vyl
—
Let us define a function r : R® — R as follows:
n
i
r(y) =Y _ v
j=1"7

Then 7 > 0 and, at all non-equilibrium points 7 > 0.

Proof.

j=1
_ ol oN
- 2 2
5 j=1 Yj
The function
(y) = —
o = —
(7y)?

is a strictly convex function, and thus for any constants ¢; > 0 such that E;Ll 0; = 1 we have
o(375=105y5) > 271 0j0(y;). Moreover, if §; > 0 for all j then equality holds only if all y; are
equal, i.e. when y is an equilibrium-point. In particular, if we set ; = v;/, we obtain.

1
2 - U(Zejyj) SZGJU(?JJ)
i= j=1
g~ 1 Q=% N~
S Sl e Sy
j=1 ‘"9 j=173  j=17]
since v > 1. Moreover, if y is not an equilibrium point, the inequality is sharp. Our lemma
follows. O
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Theorem 4.2. Let us assume Vb < Z?:l v/Bj. Then the total output of the industry s does not
go to 0 ast — oo.

Proof. This is because

n n
. .
s(Y) =Y vyi=. )\j(/\—Jyj) > (min ;) r(y)
j=1 j=1 J
and 7(y) increases along the trajectories of our system. O

5. A GENERALIZATION TO INFINITELY MANY FIRMS

In this section we formulate a model analogous to the dynamic model of the previous section, in
which n = co. While the relevance to modeling economic situations may be of moderate interest,
this model may be relevant in other applications as a general competition model.

Thus, we will study the system of differential equations

(5.1) i; = ki <— b, f’g) i=1,2,...

a; s> a;x

where k; > 0 is a constant specified for each ¢, and s = > "2, ;. As we allow 4 to go to infinity, we
must assume that the sequence x; is summable, in order for s to be finite. For the moment, we will
not consider the conditions for the above system to have a solution, but the reader should realize
that for an infinite system of differential equations the existence is not automatic.

The conditions for the sequence x to be an equilibrium, at least formally, are:
b n Bi

a; 32 a; T

3 = 0

(2

which yields

\/Es

Vb

for each ¢ > 0, just as in the case of finite n. We note that in order to ensure consistency with s
being the sum of all x;, we must assume that

= Vb
Based on the clues provided by the finite-dimensional case, we introduce the constants
Vb kb
VB ai’

7-=\/E
' Vb

T =

A =

and we will assume that
o0

> %=1
i=1
Following the case of finite n we introduce new variables y; related to x; via the following relations:

Vb T;

g Y2 %
R/
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We will also consider our model in new coordinates:

. 1 1
(5.2) U = A <—s—2 + —2> ;

Yi
oo
s = Z’Yzyz
i=1
We also introduce the following two functions:
M(y) = supy;,
i>1

m(y) = g{ Yi-

The use of supremum and infimum is now necessary because of the infinite range of the index 1.

We observe that M and m can assume value co without imposing additional assumptions on x;.
In order to be able to carry over our analysis, we will need M and m to be finite. We note that
if M is finite then also m is. Thus, we consider only sequences (y;) for which M(y) is bounded.
It is in order now to introduce a Banach space of all (not only positive) sequences y for which the
following quantity:

[¥lloo = sup |y
i>1

is finite. We will denote this space by [°°, which is standard. It will also be convenient to have a
notation for a ball of radius r in this space:

B(y) ={z€* : |z -Yllo <r}.
We note that if y € £*° then also s is finite, because the series ), z; = >, v;y; is absolutely

convergent. Indeed,
D el =D vilwl < %llYlloo = 1Y lloo-

We are ready now to discuss the existence and uniqueness of the infinite system of differential
equations (5.1). First, we need some rudiments of the theory of differential equations in Banach
spaces. Let X be a Banach space with norm || - ||. A differential equation in an set U of a Banach
space X is an equation of the form

x = F(x,t)

where F : U xR — X is a function. In order to have the local existence and uniqueness of solutions,
we need F to be continuous in both variables and to be Lipschitz in variable x. This means that
there is a constant L such that

IF(er, ) — Fxz, )] < Lixa - x|

The above condition must hold for every pair xj, x2 of elements of U and each t € R. A short
survey of the standard method of proof is included in Appendix A.

Our model is an autonomous system, that is, F is a function of x only. Let us consider such an
F:U — X. If F is differentiable at every point of U and if U is a convex set (i.e. every two points
can be connected with a line segment) then the Mean Value Theorem (which works in Banach
spaces) yields:

L = sup | DF(x)].
xeU

The benefit of having the Banach space formalism for differential equations is that we can write an
infinite system of differential equations as a single differential equation. Of course, in our situation
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the Banach space X = ¢*°. The function F is defined by the right-hand sides of the system of
differential equations (5.1), i.e. F(y) = z, where

1 1
(5.3) Zi =N\ (—3—2 + 37> .

In order to utilize the theory of ordinary differential equations in Banach spaces, we need this
function to be well defined as function F : U — X and differentiable. The function is well defined
when the above sequence z = (z;)$2; belongs to £*° whenever y does. As s does not depend on ¢,
The sequence z; is bounded only if

o il
i Vi
We will assume that sup; A\; < co. Further rationale for this condition will be given below. With
this condition on )\;, we may not allow |y;| to approach 0. In other words, F' is only defined on the
open subset of £*° given by the inequality

> 0.

m(y) > 0.

The candidate for the derivative is an infinite matrix analogous to the Jacobi matrix known from
standard multi-variable calculus class:

o 2]

We have the following expression for the partial:

2 2 o
6Zi )\Z (5—3_y—3) le—j,

7

= Dy
0y; i (%) otherwise.
s

Differentiability requires that this matrix be a bounded linear operator. For our special case of
X = £°°, this is equivalent to the rows of the matrix to be uniformly bounded in the dual space to
our Banach space. More precisely, the norm of the matrix A = [a;;] can be calculated according to

the formula:
Al = sup Y~ las.
7 N
J

If this norm is finite then the matrix product of a A and a vector h € £*° converges, and ||Ah|, <
| Al||Ih]|oo, and thus A defines a bounded linear operator. The dual space to £*° is the space £
of sequences w such that |wl|j; = Y72 |w;| is finite. We remind the reader that this condition
is necessary and sufficient for the expression (w,y) = > . w;y; to play the role of the usual scalar
product to establish 1:1 correspondence between sequences w and bounded linear functionals on
£, The linear functional corresponding to w is given by (w,-).

Based on the prior discussion, we can establish conditions for the operator DF(x) to be bounded.
First of all, we notice that we have no assumption so far to control the smallness of the denominators

in the partials g;; Thus, we will require that on U the function m be bounded from below. From

now on we will consider U to be the subset of those sequences y for which m(y) > 0. We also
define the following sequence of subsets of U:

(5.4) Ve = {y €1 L<m(y) < M(y) < c}

where C is a positive, finite constant. Clearly, if C' > C then Ugr D Ug and U = g5 Uc-
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The set Ug is a closed and bounded subset of £°°. Moreover, its interior is the open set:

{yer: g <me <mm <o},

It turns out that now we have enough information to prove the required existence and uniqueness
of solutions.

Lemma 5.1. Let us assume that sup; A\; < co. Then on the open, convezr subset
U={yet>®:m(y) >0}

of £°, the function F : U — £*° defined in (5.3) is of class C'. As such, it is locally Lipschitz.

Thus, the differential equation
dy
— =F
= FW)

satisfies the assumptions of the local existence and uniqueness theorem for Banach spaces.

Proof. We notice that s =) . viy; > Y, im(y) = m(y). Also y; > m(y) for each i. Thus, we have
the following bounds on the partials:

. Yi 1 . s
0z; < Ai Q—m(y)s + 2—m(y)3) if 1 =7,
9y | — |\ 2#) otherwise.

Based on these inequalities, we may estimate the norm

1
m(y)?

Vi
DF(y < sup\; 2 +2
DR < wohe | 200

= sup 4)\1'; < 4C3sup ;.
i m(y)3 i

Thus, in order to guarantee the local existence and uniqueness of solutions we will assume that the
constants ); are uniformly bounded in i, or, in terms of the original constants, that

k; <

1;?<poo ai\/E >

We note that the above argument has shown the boundedness of the formally defined operator
DF(y), but it still needs to be shown that this operator is indeed the derivative of F(y) at y, i.e.
we need to show that

IF(y +h) - F(y) - DF(y)h| = o(||h[), ash —o0.

Although with some calculations one can easily derive the necessary estimates, it is easier to see
that F is Frechét differentiable from the differentiability of its component functions. First, we note
that F = A o Fq, where A : /*° — (* is a linear diagonal operator given by A(y) = (A\;y;). This
operator is bounded when sup; A; is bounded, which we assume. Thus, differentiability follows if
we show that F' is differentiable, where

1
Fi(y) = We + Fa(y)

1 1
Fz(y) = (y_%7y_%7) .

The function s = s(y) is a bounded linear functional on ¢*°, and as such is differentiable. We

also have 5(31,)2 = (£ 0 5)(y), where £ : R — R is given by £(z) = :%2’ then by differentiability of
25
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compositions, we obtain that ﬁ is differentiable on U. We use the fact that s # 0 on U. The

function s(%e is a product of a differentiable (scalar) function and a (vector) constant, and as such
it is differentiable. Finally, we need to show that Fy : £ — ¢°° is Frechét differentiable. This part
of the argument is best done directly, with the help of the Taylor formula of order 1 with remainder
in Cauchy form. We are going to show that DFy(y) = B where the linear operator B is given by:

2
Bh = (——3hi>
Y3
or, using the diagonal matrix notation,

2
B = diag (——3> .
Y;

Clearly, if m(y) > 0, this is a bounded linear operator on £*°, as a diagonal operator with bounded
entries. For every vector h there exist constants 6; € [0,1], j = 1,2,... such that:

6 2
Paly +h) - Faly) - Bh = (o Gin?)
Thus, if m(y) > 0 and ||h|| < m(y), the above expression is O(||h||%,), which implies differentiability
at y and DFy(y) = B.
In order to prove that F is C!, we need to show that DF(y) is continuous. We can show
continuity by estimates specific to F', but it is more prudent to have a more general argument. By
general principles of calculus on Banach spaces, the following operations preserve the C! property:

(1) A sum of two C! functions f: U — Y and g: U — Y, where X and Y are Banach spaces,
and U C X is an open set; the sum is a C! function h : U — Y defined by h(z) = f(z)+g(z);

(2) A scalar product of a scalar C! function f : U — R and a Banach space valued C! function
g:U — Y, where X and Y are arbitrary Banach spaces and U C X is an open set; the
scalar product is a C! function h: U — Y defined by h(z) = f(z) - g(z);

(3) A composition of C! functions f: U -+ V and g: V — Z, where U C X, V C Y are open
subsets and X, Y, and Z are Banach spaces; the composition is a C! function defined by
h(z) = g(f(x)) = (g o f)(@);

(4) The inverse of a scalar C! function f : U — R, where U C X, X is a Banach space and for
every z € U we have f(z) # 0; the inverse is a function h : U — R defined by h(z) = ﬁ;

(5) The constant function f : X — Y, where X and Y are Banach spaces, is C; thus, there is
a vector ¢ € Y such that f(z) =cforall z € U.

As the function F was expressed in terms of functions s, £, a constant function with value e, Fo
and the above considered operations, we only need to show that Fy is C1, as other functions are
obviously C!. We have already proved that Fs is differentiable, and thus it suffices to prove the
continuity of DFa. We have

DF3(y +h) — DFy(y) = diag (‘ﬁ) ~ diag <_y2_3>

ding (— 25+ )
= 14, e — —
B\ i T
6
= diag | ————hi |,
& ((yi + 0;hi)* z)
where 6; € [0,1] are constants whose existence is ascertained by the Mean Value Theorem. The

norm of a diagonal operator on £ is the supremum of the norms of diagonal entries, and thus for
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|Ih||eo < m(y) we have:

6
DF5(y +h) — DFy(y)|| < hlloo-
IDF2(y + h) Wl < (m(y)—||h||oo)4“ I

Thus, the continuity of DF3 has been shown, and the entire proof has been completed. O

Remark 5.2. The function F : U — £ is C'*° and even C¥, i.e. analytic. The proof of this remark
is standard, but it is omitted, as we will not need differentiability beyond C*.

Due to the control we have over the solutions, we can prove global existence and uniqueness of
solutions.

Proposition 5.3. Let sup; \; < co. Let yo € U and y(t,y0), t € [0,a) be the local solution to the
differential equation

dy
2 _F
o =~ FW)
then for all t € [0,a) we have y(t,yo0) € U. Then M(y(t,yo)) and m(y(t,yo)) are Lipschitz for
t € [0,a). Furthermore, the function M(y(t,yo)) is decreasing and the function m(y(t,yo)) is
increasing. If, in addition, inf; \; > 0, or, in terms of the original constants,
f ki
in
1<i<oo a;+/B;
then the words “increasing” and “decreasing” in the above statement can be replaced with “strictly
increasing” and “strictly decreasing”, respectively.

>0,

Proof. We claim M is Lipschitz on £*°. In fact, let y,z € £°°. We have
M(y) — M(z) =supy; —supz; <sup(y; — 2;) = ||y — 2[|co-
1 1 7

Thus, M is Lipschitz with Lipschitz constant 1.

M(y(t,yo0)) is a composition of Lipschitz function M and differentiable function y(¢,yo). Hence
M (y(t,yo0)) is Lipschitz. Similarly, m(y(¢,yo)) is also Lipschitz.

Let s = s(y) = >, 7i¥:- For each ¢ such that y; > s we have the following estimate of y;:

_._)\.( 1+1)_/\.< 1+ 1 )
T2 T ) U T s+ w 9P
2)\1' 2)\2'
- = 8) < ——t(y; — 3).
G oo = T
(We note that we used the Mean Value Theorem, and thus 6 € [0,1].) Therefore, if y; > s then
7; < 0. Also, if y; > s then g; < 0. More detailed information will be needed later, and will be

derived from the above formula.
For every y € £*° we define:

A=Aly)=M(y)—s= Z%’(M(Y) — %)

It is clear that A > 0 and y is a non-equilibrium iff A > 0, as ; > 0 for all 7. For every ¢ € [0, A]
we also define:
Is(y)={i : y; > s+4}.
We note that Za = Z defined in the proof of Theorem 2.1. However, now it happens that Z(y) = 0
when the sup; y; is not realized for any ¢, and thus the function Z is of limited use. But for any
0 € (0,A), Zs in always nonempty.
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For all i € Z5(y) we have the following estimate:

2);
U < — 6 <0.
M(y)?

We claim that if z € B, (y) then

Ls1on(y) € Zs(z) C Zs—2n(y)-

Indeed, if z; > s(z) +d theny; > 2z, —n > s(z)+6 —n > (s(y) —n)+ 0 —n = s(y) + 0 — 2n. Thus,
one half of our claim has been shown. The other half follows from symmetry with respect to y and
z.

Now, let yo € U and yo be a non-equilibrium. So A(yo) > 0. Choose positive § and n such
that 6 + 3n < A(yo). Let us study a solution y(¢) = y(¢,yo) on the interval [0,a) such that
y(t) € By(yo). We know that for all indices ¢ € Zs(y(t)) we have g;(t) < 0. Thus, all functions
y;i(t) are decreasing throughout the domain [0,a), as long as

(5.5) i€ Toron(yo) S [ Zs(2),
2€ By (yo)

which is nonempty. For all other indices ¢ we have ¢ ¢ 5 9, (yo) and thus y;(0) < s(yo) + J + 2.
Hence,

yi(t) < wi(0) +n < (s(yo) +d+2n)+n
= s(yo)+ (6 +3n)
= (M(yo) — A(yo)) + 6 + 3n.
As long as § 4 3n < A(yo), we have y;(t) < M(yo) for i ¢ Zs2,(yo)-
Combining the estimates for both kinds of indices, we obtain M (y(t)) < M(yo) for all ¢t € [0, a).
We need to show strict monotonicity of M(y(t)), under the assumption inf; A\; > 0. (As we will
see, without this assumption strict monotonicity is not even true.)
The just completed proof of ordinary monotonicity requires only one minor change to show strict
monotonicity. The inequalities g; < 0 for can be replaced with sharp inequalities for i € Z5(y(t)):

4i(t) < — 77— 5530 < B

My ()7 =~ (Myo) )P0 =

Let
dﬁf 2 infi )\z
(M(yo) +mn)*
For all indices satisfying (5.5) and all ¢ € [0,a) we have
yi(t) < vi(0) — pt.
The estimate for all other indices ¢ remains the same, producing
M(y(t)) < max (M(yo) — pt, M(y0) — (A(yo) — 6 — 3n)).

Hence, as long as § + 3n < A(yo), we have M(y(t) < M(yo) for all ¢ € [0,a). This proves strict
monotonicity of M(y(t)).

From local monotonicity proved so far we show easily that M (y(t)) is decreasing (or strictly
decreasing) over any interval in its domain of definition. Similar arguments apply to m(y(t)), and
thus the proof of strict monotonicity on [0, 00) is complete.

Lemma 5.4. For every solution of (5.2) defined on interval [p,q] and every t € [p,q|, we have

DIV oy)(t) < —aly()(V oy)(®).
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Proof. This is an extension of Lemma 3.11 to the infinite-dimensional case. We will make the
necessary modifications in the proof of that lemma. Again, we study the function:

V(y) =M(y) — m(y)
and show
DI(Voy)(t) < —a(y(®)(V oy)(®).
First, just as in the finite-dimensional case, it is true that for every pair of indices (4, j) such that
Y; > s > y; we have

M(y)?

Ui — 95 < —a(y)(yi —y;), where a(y)=

(The reader should consult Lemma 3.1.)
For any y € U, let L5(y) be the set of all pairs (7, j) such that y; > s+ 6 and y; < s — . Again,
we have upper semi-continuity like property: if z € By(y) then:

Lsyon(y) € Ls(z) C Ls—2n(y)-
Let us consider the function

Ai(y) = min (M(y) — s(y),s(y) — m(y))-
We assume that Aq(y(t)) > 0, i.e. we are dealing with a non-equilibrium solution, and we choose
0 > 0 and n > 0 such that § + 2n < A;(y) and § — 2 > 0. Let € > 0 be chosen so that for all
t' € (t—et+e)N[0,a) thereis y(t') € By(yo). Thus,

V)= sup () —y(t) = sup  (u(t') —y;(t).
(1,5)eLs(y(t)) (1,4)ELs—2q (¥ ()
We complete the proof in the same fashion as the finite-dimensional case, except we use £ =
Ls_2n(y(t)) instead of L(y(t)) used there. O

The next theorem is analogous to Theorem 3.13, part (a) and (b). The remaining parts (c)
and (d) remain true, with almost identical proofs. We included only the parts (a) and (b), as
they require the most substantial modification of the proof, consisting in replacing the results of
Section 2, which relies upon the finite dimensionality of the phase space, with an argument based
on a Cauchy condition in a Banach space.

Theorem 5.5. (a) For every C the set Ug is forward invariant. The system (5.1) is forward
complete, and thus, the function F is an infinitesimal generator of a one-parameter semi-group of
transformations (see Appendiz D).

(b) Under the assumption inf; \; > 0, there exists a unique equilibrium § such that for allt € [0,00):

¥ (t,¥0) = ¥llo < (M(y0) —m(y0)) exp(—cot).

where

M(yo)3
Proof. (a) Since M (y) is decreasing and m(y) is increasing, for every C the set U is forward
invariant. As in the proof of Lemma 5.1, |F(y)|| < 2C%sup; A; and | DF(y)|| < 4C3sup; \; on Ug.
Thus for any initial condition yg € U, we choose C > max(1/m(yo), M (yo)) such that yg € Uc. By
Appendix C, Lemma C.1, the system is forward complete, as we easily verify that the [*°-distance
from U¢ to the complement of U is infy, m > 1/C. In fact, we estimate the left-hand side of
inequality (C.1), with »  1/C, not to exceed 4C3 sup; \; + 2C? sup; A; - C = 6C3 sup; \;.
(b) For any yo € U, we have M (y(t)) < M (yo) for ¢ > 0. Then
M(yo)?

ap

—a(y(t)) < —ap = —
29



for all £ > 0. From Lemma 5.4, we have
DI(V(y(t)) < —ao V(y(t)).

Viy(t)) = M(y(t)) — m(y(t)) is continuous because M(y(t)) and m(y(t)) are Lipschitz. From
Lemma 3.9, we have

V(y(t)) < V(yo) exp(—apt) -
For 7 < M, we define the set
P(m,M)={y € £*: m<m(y) < M(y) < M}.

Then P(m, M) is a closed set in £* and its diameter is M — m. Since inf; \; > 0, we have ag > 0.
Thus for every € > 0 there exists Tp > 0 such that V(y(7p)) < €. Since M(y) is decreasing and
m(y) is increasing, the solution y(¢) (when t > Tj) is within the closed set P(m(y(7p)), M (y(To))
whose diameter is V(y(7p)) < e. Thus the solution y(t) satisfies the Cauchy condition, and as such
it converges to a limit y because £*° is complete. Also,

y € () P(m(y(t), M(y(t)).
>0
Since M(y(t)) — m(y(t)) = V(y(t)) — 0 as t — oo, we have M(§y) = m(y). Thus y is an
equilibrium. Also,
y(8), ¥ € P(m(y(t), M(y(t)).
Therefore,

ly(®) =31l < V(y(t)) < V(yo) exp(—aot) = (M(yo) — m(yo)) exp(—aot) -

As we have seen, in order to prove strict monotonicity we had to assume that
inf A >0,
1

which makes the inequality ¢; < 0 uniform in i. Otherwise, the function M can be constant along
some non-equilibrium trajectories. This indeed happens as our next theorem shows. Before we
formulate the theorem, let us introduce the following notation. For every y € £*°, let L(y) be the
set of all limit points of the sequence y, i.e. the set of all numbers z € R such that there is a
subsequence i * 0o for which limy_, o y;;, = 2.

Theorem 5.6. Let us assume that lim; ,oo A; = 0. Let yo be a positive sequence in £*° such that
yo € Uc for some C > 0. Let y(t,yo) be the solution of the system (2.1) defined on [0,00). Then
forallt >0

L(y(t)) = L(yo)-

Proof. y(t) € Uc for all t > 0 due to the forward invariance of Uc. The modulus of the derivative
|7;| satisfies the inequality:

9] =

1 1 Ai
)\i<——2+—2>‘§ : §C2)\i

s? 0y m(y)
and thus as ¢ goes to infinity, the slope of y;(¢) uniformly converges to 0. This implies that over
any fixed domain [0, a] the functions y;(t) vary less and less as i — oo, and thus for all ¢ the

accumulation points of the sequence y;(t) are the same. More precisely, for each i we have

lyi(t) — %i(0)] = [@i(t})] < C?,
where ¢, € (0,t). Hence, for every subsequence iy ,* oo we have limg_, y;, (t) = limg_,00 ¥i, (0).
in the sense that either both limits exist and are equal, or they both do not exist. Thus, the limit

points of the sequences y;(t) and y;(0) are identical. O
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Example 5.7. Iflim; ,, A\; = 0, the above theorem gives rise to a family of examples for which the
solutions of the system do not go to equilibria, but instead oscillate wildly. Let K C (0,00) be any
set of more than 1 point and let us consider the set of initial conditions yo for which L(yo) = K.
For any such set, the solution does not go to an equilibrium. We note that K could be an interval
or a Cantor set. For instance, yo can be chosen as a sequence of all the rational numbers in [1,2].

The following theorem summarizes the results of this section.

Theorem 5.8. The solution to model (5.1) is forward complete for any initial condition yqo if the
following conditions are satisfied:

(1) yo €1%;

(2) SUP1<i<oo azk—\}E <005

(3) inf; y; > 0.
Moreover, if

(1) 32, VBi = Vb,

(2) inf1§i<oo azk—\}ﬁ_z > 0,
then there is a unique set of equilibria of model (5.1) which is a ray emanating from the origin and
is a globally strongly attracting invariant set.

APPENDIX A. THE EXISTENCE AND UNIQUENESS THEOREM

For the convenience of the reader we state the existence and uniqueness theorems for differential
equations on Banach spaces. In this appendix, B,(x) denotes the ball of radius r about x:

Bi(x)={y e X : |ly —x[| <r}.

Theorem A.1l. Let X be a Banach space, A >0 and F : B,(xq) X [to,to + A) = X be a function
satisfying the Lipschitz condition with constant L € R with respect to the first variable, i.e. for
every X1,Xz € By(xo) and t € [to,to + A):

IF(x1,8) = F(x2,t)[| < Lllx1 — xa-

Moreover, let us assume that F is continuous in the second argument. Then there is a unique
solution x : [tg,to + a) — X to the initial value problem:

dx
(A1) { 7w = Fx1),
x(to) = o,

where a is any number < A such that:

-1

1
(A.2) a<|L+- sup [F(xo,t) .

T te[to,to+A)
Proof. This argument is standard, and thus we only sketch it, with the main goal of extracting the
estimate of a. Let C°([to,t0 + a), X) be the space of continuous functions from [tg,to + a) to X
with the sup-norm:

Ix][ = sup [jx(¢).
tE[to,to—{—a)
Let Y be the subset consisting of functions x : [tg, o + a) — X which satisfy the initial condition
x(tp) = Xo and such that x([to,to + a)) C B,(x0). Let T : Y — C°([to, to + @), X) be the integral
operator defined by:
t
(Tx)(t) = %0 + / F(x(7),T)dT.

to
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We need to show that T(Y) C Y and that T is a contraction. First, for every 7 € [to, o + a) we
have ||F(x(7),7) — F(xo,7)|| < L||x(7) — x¢|| < Lr. Thus,

/ttp(x(f),f) dr

0

< [ IFG(r), 7l dr

to

I(Tx)() — %ol =

< /tt(||F(x0,7-)|| +Lr)dr <a < sup F(xo,7)+ Lr) .

) TE[to,t0+A)
By definition of a, this number is smaller than r and x([to, %o + a)) C B(x¢). Thus, T(Y) C Y.
Let us show that T is a contraction. If x1,x2 € Y then

[(Tx1)(t) = (Tx2)(B)]| = /(F(Xl(T)J)—F(xz(T)’T))dT

to
¢
< |F(x1(7), 7) — F(x2(7),7)| dr
to
< a sup |F(xi(7),7)—F(x2(7),7)||
T€[to,to+a)
< a sup L|x1(7)—x2(7)]|

T€[to,to+a)
= alLl||x1 —xa2.
The definition of a implies that aL < 1, and thus 7' : Y — Y is a weak contraction. Moreover,
for every a such that aL < 1 the Banach Contraction Principle implies both the existence and

uniqueness of the solution. Since this works for every a such that aL < 1, we can also deduce the
existence and uniqueness for aL = 1 as well. O

We note that the Lipschitz condition for F of class C! is verified by means of finding the norms
of the derivatives, which is justified by the Mean Value Theorem:

L= sup | DxF (x, )]
(X,t)GB,,- (xg) X [to ,t0+A)

where the notation Dy is used for the “partial” over x only.

APPENDIX B. THE FLOW OF AN AUTONOMOUS SYSTEM

An initial value problem for an autonomous system can be stated as follows:

dx
(B.1) { iz — F&),
X(to) = X
where F : U — X is a C! function defined on an open subset U of a Banach space X.

For every initial condition xg € U there is a solution x : (a,b) — X such that a < 0 is the
smallest possible, b > 0 is the largest possible and x(0) = x¢. Clearly, a and b may depend on xq.
Let us define functions 74 : U — R by the formulas 7_(x¢) = a and 74(x¢) = b. Theorem A.1
implies that 7 is and upper semi-continuous function and 7_ is a lower semi-continuous function.
Let us consider the set D C U x R:

D={(x,t) e DCU xR : 7_(x) <t<7(x)}.
The semi-continuity of 7+ implies that D is an open subset of U x R.

Definition B.1. The flow of the system is the map ¢ : D — U defined by the condition that for
every fized xo the function p(xq,t) = x(t). We often write p'(xq) in place of p(xo,t). The map
is only well defined on the open set {y € U : 7_(y) <t <74(y)}-
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Definition B.2. The trajectory of x € U is the function

(=7 (%), 7 (%)) 3 t = p(x,8) € U.
Thus, the trajectory may be regarded as a path in U. Similarly, the forward and backward trajectory
are defined by restricting t to (—7_(x),0] and [0,74(x)), respectively.

Definition B.3. The orbit ¢ (x) of x € U is the set which is the image of the corresponding
trajectory. More precisely,

0 (x) ={p(x,t) : t € (=7-(x),74(x))} .
Similarly, the forward orbit &1 (x) and backward orbit ¢~ (x) are defined as follows:
o7 (x) = {e(xt): te 0,7 (x))},
0~ (x) = {elxt) : te(-7(x),0[}.
Definition B.4. The w-limit set w(x) is defined as follows:
wx) =[] oF (¢'(x)).
>0
Similarly, the a-limit set a(x) is defined as follows:
a(x) = () 0~ (¢'(x)).
¢<0

Remark B.1. The families of sets in the above definition are decreasing. For instance, if ¢1,t2 €
[0,7+(x)) and t; < tp then g% (p(x)) D & (¢™(x)). Therefore, g+ (pt1(x)) 2 6+ (p2(x)).
If 6T (x) is compact then also automatically the intersection is compact and non-empty. If the
containing Banach space is finite-dimensional then the boundedness of ¢ (x) implies compactness

of ¢1 (x), and w(x) # 0. In the infinite-dimensional case, the compactness does not follow from
boundedness, and proving that w(x) # () may be considerably more difficult. !

APPENDIX C. COMPLETENESS OF AN AUTONOMOUS SYSTEM
Let us begin with the following definition.

Definition C.1. The initial condition x¢ in the initial value problem (B.1) is called forward com-
plete (backward complete) if 74 (x0) = 00 (7—_(x¢) = —00). equivalently, that the solution passing
through xg extends to [0,00) ((—00,0]). This initial condition is called complete if it is both forward
and backward complete.

The system dx/dt = F(x) and the corresponding flow ¢ are called forward complete (back-
ward complete, complete), if every xq is a forward complete (backward complete, complete) initial
condition, respectively.

We will formulate sufficient conditions of forward completeness.
For any point € X, let us consider the distance from the boundary of U:

dist(x, X\U) = inf ||x — y]||.
(x, X\U) y¢U” yll

(The right-hand side is oo if U = X.) This is also the radius of the maximal ball B,(xg) contained
in U. It is known, and easy to check using the triangle inequality, that dist(x, X \U) is a continuous,
and even Lipschitz with constant 1, function of x.

IThis difficulty is clear in this paper. We note that there is no analogue of Theorem 2.1 in Section 5. Only after
proving a stronger, exponential estimate in Theorem 5.5, we were able to derive the conclusions of Theorem 2.1.
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Lemma C.1. Let F : U — X of class C! and let x : [0,b) — U be a mazimal forward solution, i.e.
defined on a mazimal interval [0,b), to the initial value problem (B.1). The sufficient condition for
b = oo us:

1
C.1 sup inf sup DF + —||F(x(t < 0.
(C) te[0,b) (TG(O,dist(X(t),X\U)) (yGBT(x(t)) IPE@I 7‘” (( ))”)>

Proof. By Theorem A.1, for every ty € [0,b) the solution x(t) is defined on at least the interval
[to, to+a) where a is the inverse of the left-hand-side of inequality (C.1). If b < co and ¢y € (b—a,b),
we obtain a contradiction with the maximality of b. O

Corollary C.2. Let F : U — X be of class C'. A sufficient condition of completeness of the
system dx/dt = F(x) is that both of the following inequalities are satisfied:
(1) supyey ||Dﬁ‘F(‘>(()|)|H< 00;
x
2 _— .
(2) supxer dist(x, X\U) <0
Note: condition (2) is automatically satisfied if U = X.

Lemma C.3. Let F : U — X be of class C' and let x : [0,b) — U be a mazximal forward solution
to the initial value problem (B.1). Let us assume that there is a compact set K C U such that
x([0,b)) C K. Then b = co.

Proof. Let Ly = supyeg ||DF(x)|| and C = supycg |F(x)||. Both constants are finite as suprema
of continuous functions over a compact set. Let L =Ly+1and V ={x € U : | DF(x)|| < L}. We
note that V' is open and contains K. Let 7o = dist(K, X\V). Clearly, ro > 0, as it is an infimum
of a continuous function dist(x, X\V') over a compact set. It is easy to see that the left-hand side
of inequality (C.1) is not greater than L + (1/rg)C, using fixed r = rg for all ¢. Thus, Lemma C.1
implies the current lemma. O

APPENDIX D. FLOWS, SEMI-FLOWS AND SEMI-GROUPS OF TRANSFORMATIONS

If the system dx/dt = F(x), is forward complete on U (see Appendix C) then we may define
a one-parameter semi-group of transformations associated with this system by restricting ¢ to
U x [0,00). By definition, the one-parameter semi-group of transformations is a family of mappings
@' :U — U, t>0, whose domains are now unrestricted.

One-parameter semi-groups of transformations are defined by the following semi-group property:

(1) ¢° = idy;

(2) For all s,t € [0,00) we have ¢° o ¢t = 5Tt
If the system is complete then ¢ : U x R — U and ¢! : U — U. Moreover, the family (¢!);cr is a
one-parameter group of transformations. We note that the inverse of the map ¢* is .

Thus, the terms “complete semi-flow” and “one-parameter semi-group of transformations” will
be considered synonymous. Also, the terms “complete flow” and “one-parameter group of trans-
formations” are considered synonymous.

When the semi-group or group of transformations comes from the differential equation dx/dt =
F(x), the map F : U — X is called the infinitesimal generator (or simply the generator) of the
semi-group or group.

APPENDIX E. AN EXTENSION OF LASALLE’S INVARIANCE PRINCIPLE

In this appendix we prove a theorem which generalized the well-known LaSalle’s Invariance
Principle [4, 5].
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Definition E.1. Let I C R be an interval. A function g : I — R is called quasi-strictly decreasing
if
(1) For every ti,ta € I such that t1 > ta we have g(t2) < g(t1), i.e. g is decreasing;
(2) For every ty € I and t1 is not the right endpoint of I, there exists ta € I such that g(t2) <
g(t1), i.e. g has no global minimum on I.

The following definition of forward invariance does not assume that the system is complete:

Definition E.2. A subset S C U is called forward invariant for the differential equation dx/dt =
F(x) defined on U if for every x € S we have ¢ (x) C S.

Theorem E.1. Let dx/dt = F(x) be a differential equation on a Banach space X, whereF : U — X
is of class C' and U is an open subset of X. Let S C X be a forward invariant set with respect to
this system. Also, we assume that

(1) There exists a continuous function V' from X to R, such that: for every x ¢ S the function
t — V(p(x,t)) is quasi-strictly decreasing on [0,7(X));
(2) For every x € U the closure of the forward orbit ¢+ (x) is a compact set.

Then the system is forward complete and every trajectory is attracted to S. Furthermore, if Vg is
injective then S is globally strongly attracting, i.e. every trajectory outside S converges to a fized
point in S.

Proof. Let us fix any initial condition xg. The forward completeness of a solution with any initial
condition is immediate from Lemma C.3. The w-limit set w(xp) is non-empty because the forward
orbit ¢ (x) lies inside of a compact set. We claim that V is invariant on w(xg) (Invariance
Principle). Let y; # y2 and yi1,y2 € w(xg). Then there is a strictly increasing time sequence

(tn)o2 4, such that lim,,_, t, = 00 and for [ = 1,2,... we have:

(1) ¢*-1(x0) = y1;
(2) ¥*(x0) =y
Since V (¢*(xp)) is continuous and decreasing,

V(y1) = [im V("™ (x0)) > lim V(4™ (x0)) = V(y2),
V(y) = Jim V("™ (x0)) < lim V(" (x0)) = V(y2).

This implies V (y1) = V (y2)-

We next claim that w(xg) C S. Otherwise, if y € w(xo) and y ¢ S, by hypothesis, V (¢'(y)) is
quasi-strictly decreasing and is not constant for all t£. On the other hand, w(xg) is invariant and
trajectory ¢(y) lies in w(xq) so that V(¢!(y)) is constant for all ¢. Contradiction.

Hence, S is attracting since !(xg) is arbitrarily chosen.

If V is injective on S, then for all xg ¢ S the set w(xg) consists of a single point, which must be
a fixed point in S. Therefore, S is strongly attracting. O
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